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Abstract. In this two-part article, nonlinear coordinate transformations are discussed in order to 
simplify global unconstrained optimization problems and to test their unimodality on the basis of the 
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number of variables to be optimized can be reduced. Otherwise, the analysis of the structure can serve 
as a first phase for solving global unconstrained optimization problems. 
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background and the conditions of the existence of such transformations. 
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1.  I n t r o d u c t i o n  

The global unconstrained optimization problem is considered in the following 
from: 

min f ( x ) ,  x E R n , ( 1 . 1 )  

where R n is the n-dimensional Euclidean space and f :  Rn"-~R is a twice 
continuously differentiable function. The exact solution of global optimization 
problems with even a few variables should be extremely difficult and time- 
consuming, e.g., Horst and Tuy (1990), Ratschek and Rokne (to appear). In 
applications, one frequently finds only local optimum or unproved global one. 

*The paper was presented at the II. IIASA Workshop on Global Optimization, Sopron (Hungary), 
December 9-14, 1990. 

Journal of  Global Optimization 3: 359-375, 1993. 
(~) 1993 Kluwer Academic Publishers. Printed in the Netherlands. 
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These numerical experiences verify the importance of Tuy's conclusion: "To 
construct suitable algorithms, one has to understand the mathematical structure of 
problems." 

This paper is devoted to the analysis of the structure of smooth global 
unconstrained optimization problems. The results can serve as the basis of the 
first phase for solving global optimization problems, which is needed to clarify the 
possibilities of simplification, the reduction of variables and the nature of the 
problem, providing useful information for choosing and/or developing convenient 
algorithms. Without this analysis it is impossible to imagine expert systems 
including global optimization methods. Analytical tools used earlier in global 
optimization were reported by Hansen et al. (1989, 1991). 

Nonlinear coordinate transformations are widely used in nonlinear optimiza- 
tion, but a systematic description taking into account the improvement of 
algorithms is not available. There are two subclasses. The first one consists of the 
nonlinear coordinate transformations completely preserving the structure of the 
problem from the optimization point of view, while the second subclass involves 
the remaining ones. This paper describes the structure of the smooth global 
unconstrained optimization problem such that the resulting properties do not 
depend on nonlinear coordinate transformations belonging to the first subclass. 

In the second part, the smooth global unconstrained optimization will be 
considered as an optimization problem defined on a Riemannian manifold. This 
approach enables us to extend both the theoretical results investigated in detail by 
Rapcsfik (1989) and the algorithmic ones. 

On the basis of this approach, the optimization problem can be handled as a 
tensor field optimization problem introduced by Rapcsfik (1990). In differential 
geometry, in theoretical physics and in several applications of mathematics, the 
concept of tensor proved to be instrumental. In optimization theory, a new class 
of methods, called tensor methods, was introduced for solving systems of 
nonlinear equations (Schnabel and Frank, 1984) and for unconstrained optimiza- 
tion using second derivatives (Schnabel and Chow, 1991). Tensor methods are 
general-purpose methods intended especially for problems where the Jacobian 
matrix at the solution is singular or ill-conditioned. The description of a linear 
programming problem in the tensor notation is proposed in order to study the 
integrability of vector and multivector fields associated with interior point meth- 
ods by Iri (1991). The most important feature of tensors is that their values do not 
change when they cause nonlinear coordinate transformations, and thus this 
notion seems to be useful for the characterization of structural properties. This 
motivated the idea of using this notion within the framework of nonlinear 
optimization. The third part contains the extension of the tensor approach to 
global unconstrained optimization problems. 

In the next part, the local-global property (every local optimum is global) of a 
smooth nonlinear unconstrained optimization problem is investigated. This prop- 
erty is related to the concept of generalized convexity (unimodality) which plays 
an important role in the mathematical optimization theory. 
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The usual set convexity in linear topological spaces is based upon the possibility 
of connecting any two points of the space, which has led to the convex and 
generalized convex functions as well as to convex optimization. Since convexity is 
often not enjoyed by real problems, various approaches to the generalizations of 
the usual line segment have recently been proposed by Ortega and Rheinboldt 
(1970), Ben-Tal (1977), Prenowitz and Jantosciak (1979), Avriel and Zang 
(1980), Horst (1982, 1984), Martin (1982), Singh (1983), Castagnoli and Maz- 
zoleni (1987) and Horst and Thach (1988). In this conception, a generali- 
zation was proposed which differs from the others in the use of a Riemannian 
manifold as a definition domain by Rapcs~ik (1986, 1987, 1991). In this case, 
the linear space is replaced by a Riemannian manifold, and the line segment by 
a geodesic arc. The advantage of this approach, motivated first of all by Luen- 
berger's works (1972, 1973), is the recognition of the geometrical structure 
of optimization problems which can lead to new theoretical and algorithmic re- 
suits. 

When geodesic convexity has been proved, it is concluded that a stationary 
point is a global optimum point too, and consequently every algorithm which 
gives a stationary point gives a global minimum point too. The geodesic convex 
optimization problems contain the convex ones as a special case. 

First, the characterization of geodesic convexity was elaborated in the case of a 
submanifold of R n Rapcsak (1987, 1991) by using the tools of the immersion. On 
the basis of this result, in order to check the geodesic convexity property of a 
function on the feasible region it is necessary and sufficient to state the positive 
semidefiniteness of a suitable matrix in this domain. For nonlinear optimization 
problems containing only equalities, such a matrix is constructed by means of the 
gradients and the Hessian matrices of the objective and the constraint functions. 
The corresponding computational complexity is of the same order as in the 
convexity and less than in the pseudo-convexity. 

By developing these results, a unified, coordinate-free framework based on the 
notion of tensor and tensor calculus was obtained in order to formulate the 
statements independently from the immersion, yet ensuring the possibility of 
symbolic computation Rapcs~ik (1990). 

The main aim of the following part is to clarify the geometrical background and 
to characterize a subclass of the global unconstrained optimization problems 
endowed with the geodesic convexity property by applying the previous results. It 
seems that this generalization enlarges the class of functions with a local-global 
property. 

After characterizing the structure of global unconstrained optimization prob- 
lems and the properties (optimality and geodesic convexity) which do not depend 
on nonlinear coordinate transformations, it is possible to give conditions for using 
nonlinear coordinate transformations in order to obtain a quadratic function 
(Morse theorem) and for improving the original structure without changing the 
optimality properties. 

Finally, the symbolic computation aspects of the results are discussed. 
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2. Smooth Unconstrained Optimization Problem 

Consider the following optimization problem: 

min f ( x ) ,  x E  R ~ , (2.1) 

where R n is the n-dimensional Euclidean space and f :  R"--->R is a twice 
continuously differentiable function. 

An x 0 E R ~ having the property f(x0) ~<f(x) for all x ~ R  n is called a global 
minimum for f. If f(x0)~<f(x) holds for a neighbourhood of x 0 , then x 0 is called a 
local minimum for f. 

The  space R ~ is the product space of ordered n-tuples of real numbers which 
forms an n-dimensional differentiable manifold. Consider two copies of a Eucli- 
dean space: R n with Cartesian coordinates x = ( x l , . . . ,  Xn) and R 'n with Car- 

tesian coordinates u = ( u l , . . . ,  un). 

D E F I N I T I O N  2.1. A continuous coordinate system in a domain of Euclidean 
space R" is said to be a system of functions u(x) which maps this domain 

continuously and bijectively onto a certain domain of R'". 

The system of functions u(x) is a homeomorphism between the two domains 
which defines the coordinates of the domain of R n relative to this homeomorph-  
ism. Let  the system of functions x(u) denote the inverse mapping of u(x) which is 
the parametrization of the original domain in a differential geometric sense 
relative to the inverse mapping. Among all continuous coordinate mappings, 
those are of special interest that define a smooth mapping between the domains. 

D E F I N I T I O N  2.2. A curvilinear coordinate system in a domain of Euclidean 
space R" is a system of smooth functions u(x) which maps bijectively the domain 
of R n onto a domain in R 'n such that the determinant of Jacobian matrix 
det(Ju(x)) = det(au/ax)  is not zero at all points of the domain of R ". 

If the set of smooth functions u(x) has the property that the determinant of the 
Jacobian matrix is not zero in a domain of R' ,  then for each point of this domain 
there exists an open neighbourhood such that u(x) defines a local coordinate 
system in this neighbourhood. In this case, the inverse mapping also defines local 
curvilinear coordinates. 

By introducing curvilinear coordinate systems in problem (2.1), we may 
consider it as nonlinear coordinate transformations. From our point of view, the 
local nonlinear coordinate transformations of parametrizations in a differential 
geometric sense will be interesting because in this case problem (2.1) can be 
expressed in a neighbourhood U of R 'n as follows: 

min f (x(u)) ,  u E U C R tn. (2.2) 

This is the standard way to handle differentiable manifolds. 
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In problem (2.1), the manifold R n is endowed with the Euclidean metric which 
is a special Riemannian one. 

D E F I N I T I O N  2.3. A Riemannian metric is said to be given in a Euclidean 
domain if, in any curvilinear coordinate system, there is defined a set of smooth 
functions gq, i, j =  1 , . . . ,  n (a matrix function G) such that the following 
conditions hold: 

1. gq = gji, i, j = 1 , . . . ,  n, (the matrix function G is symmetric), 
2. G is nonsingular and positive definite, 
3. under  curvilinear coordinate transformations, the value of the quadratic 

forms defined by G does not change. 
If the indefiniteness is required instead of the positive definiteness, then the 

Riemannian metric is indefinite. 

A differentiable manifold endowed with a Riemannian metric is called a 
Riemannian manifold. 

It is possible to deduce from (2.1) an equivalent problem in the form 

m i n f ( x ) ,  x ~ M ,  (2.3) 

where f C C 2 and M is a Riemannian C 2 n-manifold. 

3. Tensors in Optimization 

In this part,  the object is to have a unified, coordinate-flee framework based on 
the notion of tensor and tensor calculus for both theoretical and algorithmical 
aspects of the global unconstrained optimization problems. This approach was 
introduced in Rapcsfik (1990). 

First the notion of the tensor is recalled and thereafter the tensor (field) 
optimization problem will be defined. 

Let  M be a C a n-manifold and let m be a point in M. The tangent space T M  m at 
m is an n-dimensional vector space. Let  T M *  m be the dual space of T M , , .  T M *  is 
endowed with its natural vector space structure. The theory of linear algebra can 
now be applied to define tensors (e.g. Hicks, 1965). 

D E F I N I T I O N  3.1. A p-covariant tensor at m (for p > 0) is a real-valued p-l inear 
function on T M  m • T M  m x . . .  x T M ,  n (p-copies).  

A q-contravariant tensor at m (for q > 0) is a real-valued q-linear function on 
T M *  x T M *  x . . .  x T M *  m ( q - c o p i e s ) .  

A p-covariant  and a q-contravariant tensor at m is a ( p  + q)-linear real-valued 
* q function on ( T M m )  p x ( T M m )  . 

A tensor is symmetric if its value remains the same for all possible permutations 
of its arguments. 
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A 0-covariant tensor at m is a real number. 
A tensor field on M is a mapping that assigns a tensor at m to each m in M. 

DEFINITION 3.2. A nonlinear optimization problem is said to be a tensor 
optimization one at m E M if the objective function and all the constraints are 
tensors, i.e., the problem is given in the following form: 

* 
min T ( v  1 ,  . . . , v p , v  1 ,  . . . , v  

T j ( v , , . . . , v p , v ~ , . . . , V q ) = O ,  j = l , . . . , k l ,  
(3.1) 

Ti(v I . . . .  , V p , V ~ , . . . , V q ) ~ > 0 ,  i = l , . . . , m  1, 

( V l , . . .  , v p , v ~ , . . . , v q ) C ( T M m )  p •  q ,  

where T ,  T j ,  T i ,  j = 1 . . . . .  k l  , i = 1 . . . .  , m 1 are p-covariant and q-contravariant 
tensors. 

If all the tensors are replaced by tensor fields in the definition, then the tensor 
field optimization problem is obtained. 

DEFINITION 3.3. A second-order covariant tensor is positive semidefinite 
(definite) at a point rn E M if the corresponding matrix is positive semidefinite 
(definite) on T M  m x T M  m in any coordinate representation. 

A second-order covariant tensor field is positive semidefinite (definite) on 
A C M if it is positive semidefinite (definite) at every point of A. 

If there are no constraints, then the problem is an unconstrained tensor (field) 
optimization problem. 

It follows from the definitions that neither the values of the tensors nor the 
optimum value of problem (3.1) change on a nonlinear coordinate transforma- 
tion, and thus this problem class can become an adequate tool to study the 
structure of problem (2.3). 

To build a tensor optimization problem, the operations of tensor algebra 
(addition, subtraction, multiplications and contraction) and of tensor analysis 
(covariant differentiation) can be applied, as can other operations which preserve 
the tensor character. 

R E M A R K  3.1. As the objective function f(x) of problem (2.3) is a 0-covariant 
tensor field on M, problem (2.3) is an unconstrained tensor field optimization 
problem on A. 

In this paper, covariant differentiation will be the most important tool. In order to 
explain covariant differentiation, we follow Milnor (1969) and Gabay (1982). 
Define a vector field V on the manifold M as a smooth map V : M---~ R n such that 
V ( m )  E T M  m for all m E M. 
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Let  m E M. Given a vector  v E T M  m and a vector field W on M, we define a 

new vector  D v W  E TMm,  called the covariant derivative of W along v. 

The  application D v W :  T M  m ~ T M  m must be linear in v and satisfy the chain 
rule given by 

O v ( f W  ) = f ( m ) O v W  + V f ( m ) W ,  (3.2) 

where  f ( m )  is any real-valued smooth function on M. It  specifies an affine 
connection on M at m. 

Let  V and W now be vector  fields on M. We define the field D , W ,  the covariant 
derivative of  W with respect to V on M, by its values 

Dr(re)W= D v W  , (3.3) 

where  v = V ( m )  E T M  m . 

The affine connection is thus specified globally on M (e.g. Milnor, 1969). 

The  covariant  differentiation can be extended to arbitrary tensor fields. In a 
system of local coordinates,  the coefficient functions of the covariant differentia- 
tion (affine connection) t3 F t j  2 , 11 , 12, l 3 = 1 ,  . . . , n define the covariant derivative 

n l 3 for  all the tensor fields. Let  VF = ~ / 3 = 1  V / 3 F t l / 2  , l l ,  l 2 = 1 , . . . ,  n, where Vl3, l 3 = 
1 , . . . ,  n are the component  functions of a covariant vector field, and let 

VF = E/ l= ln  --|71lFI3Lll12 , 12, l 3 = 1, . . . , n, where V ;~, 11 = 1,..  . , n are the component  
functions of a contravariant  vector field. The following result is well-known in 
differential geometry  (e.g. Mischenko and Fomenko,  1988): 

P R O P O S I T I O N  3.1. On a covariant vector f ie ld V, the covariant derivative is 
equal  to 

D V =  J V -  V F ,  (3.4) 

while on a contravariant vector f ie ld 

O V =  J V  + v r  , (3.5) 

where  J V  denotes the Jacobian matrix  o f  the corresponding vector f ie ld and V F  is 

the multiplication o f  the vector f ie ld  and the three-dimensional  F matrix  at each 
po in t  o f  an arbitrary coordinate ne ighbourhood.  

For an arbitrary tensor f ield,  the covariant derivative f o r m s  a tensor field. 
I f  the tensor f ie ld  is scalar (i.e. a smooth  func t ion  on M ) ,  then the covariant  

derivative is equal to the gradient. 

D E F I N I T I O N  3.4. If  

FI31/2 = Fll~lx for all 11,12, l 3 = 1 , . . . ,  n ,  

in every system of local coordinates,  then the connection is symmetric.  

(3.6) 
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The fundamental theorem of Riemannian manifolds is as follows (e.g. Mischenko 
and Fomenko,  1988): 

T H E O R E M  3.1. Let G be a symmetric matrix function defining the metric on a 
Riemannian manifold M in any system of  local coordinates. Then there exists a 
unique symmetric connection such that 

Fll3112 ~ ~ 1 /2 (0 ; ;1~+  Oglz~ 00~/2)(G-1)/3o~ (3.7) 
a=l  12 OXl 1 

for all l l ,  12, l 3 = 1, . . . , n. 

/3 Here,  the coefficient f u n c t i o n s  Fll /a , 11 , 12, l 3 = 1 . . . . .  n uniquely determined by 
the Riemannian metric are called the second Christoffel symbols. 

13 __ If the Riemannian metric is Euclidean, then Fq~ 2 - 0, 11,12,13 = 1 , . . . ,  n. 

4. Geodesic Convexity for Unconstrained Optimization Problems 

In this part, the object is the characterization of the geodesic convexity property 
for global unconstrained optimization problems by using tensor calculus. The 
approach given here can be found in details in the paper of Rapcsfik (1991), and 
therefore the proofs of the first statements are omitted. Geodesic convexity was 
investigated under a different definition of the geodesic convex set (totally 
geodesic convex set) in Udriste (1976, 1977, 1979, 1984). 

Let M be a connected Riemannian C: n-manifold. As is usual in differential 
geometry, a curve of M is called a geodesic if its tangent is parallel along the 
curve (e.g. Hicks, 1965). 

DEFINITION 4.1. A set A C M is said to be geodesic convex if any two points of 
A are joined by a geodesic belonging to A. 

E X A M P L E  4.1. A connected, complete Riemannian manifold is geodesic convex 
(e.g. Hicks, 1965). 

E X A M P L E  4.2. For every point m in M, there is a neighbourhood U of m which 
is geodesic convex, and for any two points in U, there is a unique geodesic which 
joins the two points and lies in U (e.g. Hicks, 1965). 

DEFINITION 4.2. Let A C M be a geodesic convex set. Then it is said that a 
function f:A---> R is geodesic convex if its restrictions to all geodesic arcs 
belonging to A are convex in the arc length parameter. 

By the definition, the following inequalities hold for every geodesic y ( s ) ~  A,  
s E [0, b] joining the two arbitrary points m l ,  mz E A: 
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f(3,(tb)) <- (1 - t)f(7(O)) + tf(3,(b)) , 0 <~ t <~ 1,  (4.1) 

where  3,(0) = m l ,  7(b) = m2 and s is the arc length parameter .  
If  M C R n is a connected Euclidean manifold, then the geodesic convex set 

A s M is a convex set and the geodesic convex function f : A ~ R is a convex 
function on A, where 

T(tb) = m I + t(m 2 -- m l )  , (4.2) 

b = Im 2 - mll  and II means the Euclidean norm of a vector. 
F rom (4.1), we obviously conclude the following 

L E M M A  4.1. Let A C M be a geodesic convex set and let f :  A--~ R be a geodesic 
convex function. Then the level sets 

{m [ f (m)  ~<f(m0),  m,  m 0 E A} (4.3) 

are geodesic convex. 

T H E O R E M  4.1. Let A C M be a geodesic convex set and let f : A--~ R be a 

geodesic convex function. Then a local minimum point is also a global minimum 
point. 

T H E O R E M  4.2. Let A C M be an open geodesic convex set. Then a function 

f :  A ~ R is geodesic convex if  and only i f  it is geodesic convex in a geodesic 
convex neighbourhood o f  every point  o f  A .  

D E F I N I T I O N  4.3. The point m E A C M is a stationary (critical) point of  the 
continuously differentiable function f :  A ~ R if the gradient Vf(m) is equal to 
zero. 

C O R O L L A R Y  4.1. Let A C M be an open geodesic convex set and let f : A --* R 
be a continuously differentiable geodesic convex function. Then every stationary 
point  o f  f is a global minimum point too. Moreover, the set o f  global minimum 
points is geodesic convex. 

The geodesic convexity is a natural generalization of the classic convexity notion 
of functions, because every Riemannian metric provides a geodesic convexity 
proper ty .  The  geodesic convexity of unconstrained optimization problems will 
now be characterized by tensors. 

Le t  M = R n endowed with a Riemannian metric, and let D f  and D 2f denote  the 
first- and second-order  covariant derivative of f on M with respect to the 
Riemannian  metric,  respectively. 
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T H E O R E M  4.3. Let  A C M be an open geodesic convex set and let f : A----> R be a 
twice continuously differentiable funct ion.  Then f is (strictly) geodesic convex on A 
i f  and  only i f  D 2f is a (strictly) positive semidefinite tensor at every point .  

Proof .  If A C M is a geodesic convex set, then a function f : A ~ R is geodesic 
convex if its restrictions to all geodesic arcs belonging to A are convex in the arc 
length parameter .  By Theorem 4.2, a function f :  A---> R is geodesic convex if and 
only if it is geodesic convex in a geodesic convex neighbourhood of every point of 
A. Thus, it is sufficient to prove the statement only in an arbitrary geodesic 
convex neighbourhood. 

Consider an arbitrary coordinate representation of the manifold M in any 
geodesic convex neighbourhood of A. Then a geodesic can be given in the form 
X(U(S)),  S ~ (S1,  $2) , where this function is a twice continuously differentiable 
function and s means the arc length parameter.  Now the geodesic convexity of the 

function f(x(u(s))), s E (s 1 , s2) is equivalent to the non-negativeness of the second 
derivative at every point. 

Let  us introduce the following notations and operations: 

/ . __ t x/ /-/x(u) = \ Ux~ (u) / Jx(u) 

where I-lxi(U), i = 1 . . . . .  n are n x n Hessian matrices and Jx(u) is an n x n 
matrix, 

y T _ _ _ ( y l , .  �9 �9 , Y n ) E R  n , W T = ( W 1 , . .  . , W k ) ~ R  n, 

( 'w/ 
y ~ x ( u )  -- i=1 yiHx~(u), w ~ x( n ) w  = \w~x'~(u)w/  

~wT/-/x(u)w = wT~/-/x(u)w, a ~ R .  

By differentiating twice the function f(x(u(s))), s @ (sl ,  s2), we obtain that 

d 
ds  f(x(u(s))) = Vxf(x(u(s) ) )Jx(u(s) )u ' (s  ) , 

d 2 
ds-~ f(x(u(s))) = u'(s)~Jx(u(s))~Hx f(x(u(s))) Jx(u(s))u'(s) 

+ Vxf (x(u(s ) ) )u ' ( s )ZH,  x(u(s))u'(s)  + Vxf(X(U(S)))Jx(u(s))u"(s ) . (4.4) 

As the curve x(u(s)), s E (s l ,  sz) is a geodesic, we can substitute the following 
system of differential equations for u"(s): 

u"(s) = - u'(s) rFu'(s)  , (4.5) 

where the n • n x n matrix F contains the second Christoffel symbols and u'(s),  
s @ (sl ,  s2) are the tangent vectors. Considering only geodesics at each point and 
in every direction, we obtain that the geodesic Hessian matrix 
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H~f(x(u)) = Jx(u)~Hxf(x(u))Jx(u) 

+ 7x f(x(u))Hx(u ) - VJ(x(u)) Jx(u)F,  (4.6) 

where the matrix multiplication Jx(u)F is defined by the rule related to the 
multiplication of a row vector and a space matrix, applied consecutively for every 
row vector of Jx(u). (Note that the result does not change if first the multiplica- 
tion VJ(x(u))Jx(u)  is performed.) 

The right-hand side of this expression is exactly the second-order covariant 
derivative of f(x(u)), i.e. 

D2f(x(u)) = Jx(u)7"Hxf(X(U))Jx(u) 

+ Vx f(x(u))Hx(u)  - L f ( x ( u ) ) J x ( u ) r ,  

which proves the statement. 

(4.7) 
[] 

C O R O L L A R Y  4.2. The geodesic convexity property is invariant under nonlinear 
coordinate transformations. 

R E M A R K  4.1. The gradient Vuf(x(u)) is equivalent to the expression 

Df(x(u)) = ~7 X f(x(u)) Jx(u).  (4.8) 

Rosenbrock's banana function f(x) = 100(x2 - x2) 2 + (1 - Xl) 2 defined on R 2 is a 
continuously differentiable nonconvex function having a unique minimum at 
(1, 1). However, it does not belong to any family of generalized convex functions 
such as pseudo- or quasiconvex functions, because its level sets are nonconvex 
"banana-shaped" sets. In the first part of our article, a nonlinear coordinate 
transformation Yx = xl ,  Y2 = x 2 1 -  X2 was proposed in order to obtain a convex 
function. By Theorem 4.3 and Corollary 4.2, the geodesic convexity property 
does not depend on nonlinear coordinate transformations, and thus Rosenbrock's 
function is included in this class. This approach is more general than that of 
Avriel (1976). 

For the tensor field optimization problem (2.3), the characterization of the 
local optimality is a direct consequence of the preceding theorem, and thus the 
connection between the optimality and convexity properties becomes clearer. 

T H E O R E M  4.4. I f  m o E M is a local minimum point of  (2.3), then 

Df(mo) = 0 (4.9) 

and 

D2f(mo) is positive semidefinite. (4.10) 

If, at m o E M, (4.9) holds and 

D2f(mo) is positive definite, (4.11) 

then m o is a strict local minimum of  (2.3). 
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The optimality conditions and geodesic convexity characterized by tensors do not 
depend on nonlinear coordinate transformations, so it is possible to use this 
analytical tool in order to attain a better realization of the problem from an 
optimization point of view which preserves the structure. 

We have seen above that the covariant derivative depends on the coefficient 
functions of the covariant differentiation (affine connection) and for a Rieman- 
nian manifold on the Riemannian metric (Theorem 3.1). It follows that the 
geodesic convexity property characterized by Theorem 4.3 has a one-to-one 
correspondence with the Riemannian metric (every Riemannian metric generates 
a geodesic convexity property), and thus a wide class of generalized convex 
functions having the local-global property can be introduced in optimization 
theory. For example, the Euclidean metric of R n determines the straight lines as 
the geodesics and the well-known convexity notion of smooth functions defined in 
a linear vector space. 

5. Improvement of the Structure 

In the first part of our article, nonlinear parameter transformations are discussed 
to simplify the nonlinear objective function and to test whether it is unimodal. 
Here, the conditions of the existence of such transformations are investigated on 
the basis of the differential geometrical approach. Because of the manifold 
structure, the coordinate transformations are defined only in neighbourhoods and 
are generally nonlinear. For this case, the Morse theorem providing sufficient 
conditions is fundamental. 

Let HfirM denote the Hessian matrix of the function f restricted to the tangent 
space T M  of M. 

DEFINITION 5.1. The matrix H f r  M is called the Hessian of f at a critical point. 
If the Hessian matrix is nondegenerate at a critical point, i.e., if HflrM is a 
nonsingular matrix, then we call the critical point nondegenerate. 

The Hessian of f is defined only at a critical point because it coincides with the 
second covariant derivative at this point. Outside this point the covariant deriva- 
tive depends on the Riemannian metric. This fact is demonstrated in (4.6). This 
formula shows that the type of the critical point should not be changed by 
introducing a new Riemannian metric, as the covariant derivative is equal to zero. 

DEFINITION 5.2. If m is a nondegenerate critical point of f on M, then the 
index of the Hessian matrix of f at m is called the index of the nondegenerate 
critical point m. 

MORSE THEOREM. Let m be a nondegenerate critical point o f  f on M. Then 

there is a local coordinate system in a neighbourhood o f  m satisfying u(m) = 0 and 
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f~- - f (m)  -[- ( U l )  2 -]- �9 �9 �9 -4- ( U r )  2 - -  ( U r + l )  2 . . . . .  ( U n )  2 -  (5.1) 

Here, n - r is equal to the index o f  m. 

The Morse theorem is the generalization of Theorem 1 of the first article for the 
case of a Riemannian manifold and a nondegenerate critical point. 

The question now is: How to improve the structure of the problem without 
changing the optimization character? The next theorem investigates the possibility 
of the introduction of a Riemannian metric on a differentiable manifold such that 
the function f :  M--+ R becomes geodesic convex on M. The proof needs the 
following lemma (e.g. Matsushima, 1972): 

L E M M A  5.1. Let aij(u), i, j = 1 , . . .  , n be C 2 functions defined on a neighbour- 

hood U o f  the origin o f  R n satisfying aiy(u) = aye(u), i, j = 1 , . . . ,  n, det A(u) # 0 
for  u E U,. where we set the matrix function A(u) = (aij(u)). Then, there exist n x n 
nonsingular matrices T(u) = (tij(u)) such that the elements o f  T(u) are C 2 functions 

defined on some neighbourhood V (V C U) o f  0 and 

i) V(u) 5a (u) V(u) -- , (5.2)  

0 

e i = l  or e i = - l ,  i = l , . . . , n h o l d s  at each p o i n t u C V .  

R E M A R K  5.1. In the original lemma, the elements of the matrices A(u) and 
T(u), n E V are C = functions (analytic), but this condition can be replaced in the 
proof by the twice differentiability. 

T H E O R E M  5.1. Let  A C M be the interior o f  a compact, geodesic convex set and 

let f :  A ~ R be a twice continuously differentiable function. Assume that f has only 

one critical point  on A which is nondegenerate and whose index is zero. Then there 
exists a Riemannian metric G on A such that f becomes a strictly geodesic convex 
function on A with respect to the metric G. 

Proof. By Theorem 4.2, it is sufficient to prove the geodesic convexity property 
for a covering coordinate neighbourhood system of A. As A is the interior of a 
compact set, there exists a finite number of neighbourhoods which cover it. 
Because of the assumptions, f i s  a geodesic convex function in a neighbourhood of 
the critical point, so we take a finite number of coordinate neighbourhoods not 
containing the critical point into account. 

By Theorem 4.3, the function f i s  geodesic convex on A if and only if D2fis  a 
positive definite tensor field on A. The second-order covariant derivative D2f  
depends on the Riemannian metric at every point which is different from the 
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critical point, and thus in the following steps we will be able to ensure the positive 
definiteness of D2f. 

1. Introduce a nonlinear coordinate transformation in every coordinate neigh- 
bourhood such that the matrix 

Jx(u)~/Lf(x(u))Jx(u) + L f ( x ( u ) ) t L x ( u  ) (5.3) 

becomes a constant diagonal matrix. 
This is always possible by Lemma 5.1 and by the fact that the matrix is not a 

tensor field, and therefore we can introduce a previous nonlinear coordinate 
transformation (if it is necessary) such that its determinant will not be singular. 
Of course, the resulting diagonal matrices can be different in the different 
coordinate neighbourhoods. 

Let x(u) denote the new coordinate representation, too. 
2. Introduce an orthogonal transformation in R 'n such that all components of 

the vector VJ(x(u))J(x(u)) become greater than zero. 
As Vxf(x(u))r  and J(x(u)) is a nonsingular matrix, such an orthogonal 

transformation always exists. 
Denote x(u) the new coordinate representation, too. 
3. Introduce the following Riemannian metric in every coordinate neigh- 

bourhood: (e 0 00) 
i e_2CU2 �9 , c > 0  (constant).  (5.4) 

0 e -icun 

By (3.7), we obtain that the 3-dimensional matrix F contains only the compo- 
nents Fii = - c ,  i = 1 , . . . ,  n different from zero. 

Thus the n x n matrix 

-Vx f(x(u))Jx(u)F (5.5) 

is a positive definite diagonal matrix in every coordinate neighbourhood with the 
elements multiplied by c. 

4. Choose the value c > 0 in every coordinate neighbourhood such that the 
matrix D2f(x(u)) becomes a positive definite matrix. Let c* denote the maximum 
of the c values in the finite number neighbourhoods and introduce the Rieman- 
nian metric 

e 0 0  _2C,Ul . . . 

G = [ 0.. e -2c*u2 . , 

\ 0 e-2 *u,,/ 
on A. 

c* > 0 (constant) (5.6) 

Then it turns out that the function f is geodesic convex on A with respect to the 
metric G. [] 
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REMARK 5.2. The introduction of the metric G on A is equivalent to a 
nonlinear coordinate transformation. 

Theorem 5.1 is not a local, but a global result, which ensures a general method 
for the improvement of the structure of smooth problems and algorithms. When 
the second derivatives or their approximations are used for solving unconstrained 
problems, then the change in the Riemannian metric can imply the positive 
definiteness of the geodesic Hessian matrices and the matrix updating formulas of 
variable metric methods. In this way, the Newton-like and quasi-Newton-like 
methods can be involved in this framework for a singular Hessian matrix too. 
Redkovskii (1989) and Perekatov and Redkovskii (1989) described nonlinear 
coordinate transformations to achieve a positive Hessian matrix for the Newton 
method. The change of the Riemannian metric can replace this type of nonlinear 
coordinate transformations. 

6. Concluding Remarks 

In this paper, nonlinear coordinate transformations are discussed in order to 
clarify some structural properties of global unconstrained optimization problems. 
The analysis of the structure can serve as a tool for the simplification of the 
problems and the reduction of the variables, and for choosing and developing 
convenient algorithms. The tensor approach is a global, coordinate-free descrip- 
tion which can be connected with symbolic computation. 

Symbolic computation is a new and promising field in mathematics and 
computer science, covering all aspects of algorithmic solutions to problems 
dealing with symbolic (i.e. non-numerical) objects. Important subareas of sym- 
bolic computation form the basis for many high-tech application areas such as 
CAD/CAM, robotics, geometric modelling, expert systems, etc. Symbolic oper- 
ations for optimization (Stoutemyer, 1978) can be made by the softwares 
MATHEMATICA or REDUCE. From a global optimization point of view, the 
first and second covariant differentiation with respect to the Riemannian metric 
and the nonlinear coordinate transformations were proposed in this paper. In 
algorithms, nonlinear coordinate transformations (symbolic computation), e.g. 
Redkovskii (1989) can be replaced by changing the metric (numerical computa- 
tion) on the basis of Theorem 5.1. 
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